Universal computing by DNA origami robots in a living animal

نویسندگان

  • Yaniv Amir
  • Eldad Ben-Ishay
  • Daniel Levner
  • Shmulik Ittah
  • Almogit Abu-Horowitz
  • Ido Bachelet
چکیده

Biological systems are collections of discrete molecular objects that move around and collide with each other. Cells carry out elaborate processes by precisely controlling these collisions, but developing artificial machines that can interface with and control such interactions remains a significant challenge. DNA is a natural substrate for computing and has been used to implement a diverse set of mathematical problems, logic circuits and robotics. The molecule also interfaces naturally with living systems, and different forms of DNA-based biocomputing have already been demonstrated. Here, we show that DNA origami can be used to fabricate nanoscale robots that are capable of dynamically interacting with each other in a living animal. The interactions generate logical outputs, which are relayed to switch molecular payloads on or off. As a proof of principle, we use the system to create architectures that emulate various logic gates (AND, OR, XOR, NAND, NOT, CNOT and a half adder). Following an ex vivo prototyping phase, we successfully used the DNA origami robots in living cockroaches (Blaberus discoidalis) to control a molecule that targets their cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thought-Controlled Nanoscale Robots in a Living Host

We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles,...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

The Beauty and Utility of DNA Origami

INTRODUCTION TO DNA ORIGAMI Over the past three decades, DNA, the genetic information carrier in most living organisms, has seen an ever-expanding role as a material for the construction of nanoscale objects. One technique in particular, known as DNA origami, has opened up the ability for researchers to design arbitrarily shaped complex three-dimensional (3D) nanostructures. Origami refers to t...

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

Cloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami

Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014